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1. Introduction

The load-carrying capacity of a structural-
concrete member is said to be ‘size-effect’
dependent when its predicted values depend on
the size of the member. Size effects have been
first reported for the case of reinforced-concrete
(RC) beams, without transverse reinforcement
(stirrups), characterized by nonflexural types of
failure and widely referred to as ‘shear’ modes of
failure [1]. It has been suggested that for such a
mode of failure the causes of size effects may be
explained in terms of fracture-mechanics
concepts, both linear [2] and non-linear [3]. In
fact, the dependence of the failure load on size
effects has been attributed to the release of stored
elastic energy caused by crack propagation
eventually leading to ‘shear’ failure of an RC
beam [4]. 

Explanations of the causes of size effects, such
as the above, imply that the experimentally
established load-carrying capacity is essentially
independent of secondary testing-procedure
effects. However, this assumption underestimates
the significance of small-unintended out-of-plane
actions, which invariably develop in any
experiment, intended to induce plane-stress
conditions in specimens. Such actions may be not
only due to small unintended out-of-plane

eccentricities of the in-plane loads [5] (which,
admittedly, may be minimized so as to become
negligible), but, also, due to non-symmetrical
load-induced cracking, which is inherent in
concrete owing to the heterogeneous nature of
this material [6]. 

In fact, the dependence of size effects on out-
of-plane actions due to either small unintended
eccentricities of the applied load or non-
symmetrical load-induced cracking has already
been established by comparing analysis
predictions with experimental values [7]. The
structural forms analyzed were mainly
geometrically similar slender RC beams with a
rectangular cross-section and a wide range of
sizes, both without and with stirrups, the behavior
of which was already established by experimental
work cited in Ref. [7]. The beams analyzed were
subjected to transverse loading configurations,
symmetrical with respect to the middle cross-
section, similar to those applied experimentally,
assuming that the out-of-plane eccentricities
were non-existent and significant discrepancies
between experiment and analysis were found to
occur only when the structural member tested
was incapable of absorbing small unintended
torsional effects [5]. In addition, the nonlinear
finite element (FE) model [7] adopted for the
analysis was capable of describing the formation
of non-symmetrical load-induced cracking even
for the case of a symmetrical cross-section under
a symmetrical loading configuration. It should be
noted, however, that such non-symmetrical
cracking could also be prevented by analyzing
only one of the two symmetrical portions of the
beams with respect to the longitudinal plane of
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symmetry at mid-breadth. 
The results of the analysis demonstrated that

the presence of stirrups, specified in compliance
with current codes of practice so as to prevent
shear types of failure, leads to predictions
independent of size effects in all cases
investigated. Similarly, for the case of beams
without stirrups, it was found that postulating the
presence of hypothetical (but, in practice,
unavoidable) out-of-plane actions yields
predictions of load-carrying capacities that can
explain the experimental values, irrespective of
the size of the beams investigated; on the other
hand, ignoring out-of plane actions for all beams
without stirrups led to size-effect dependent
predictions of load-carrying capacity. The above
results clearly demonstrate that, for the case of
slender RC beams exhibiting a ‘shear’ type of
failure, size effects are most likely to be
associated with secondary testing-procedure
effects rather than fracture-mechanics related
properties. 

The investigation of size effects for beams has
been the subject of published experimental work
[8 and 9]. As for the cases of slender RC beams
[3 and 4], the latter experimental work was
considered to indicate that the load-carrying
capacities of both the short [8] and the deep [9]
RC beams are size-effect dependent, and that this
dependence may be dictated by fracture-
mechanics related characteristics. However, the
criterion employed for identifying size effects
involved the use of values of the nominal shear
stress at failure, which implies a ‘shear’ type of
failure of the beams; and yet, it is widely
recognized that RC beams with small values of
av/d, without stirrups, behave as tied arches, the
failure of which cannot be realistically described
by a shear-failure criterion. 

Shear walls are used extensively in moderate-
and high-rise buildings to resist lateral loads
induced by earthquakes. The seismic
performance of many buildings is, therefore,
closely linked to the behavior of the reinforced
concrete walls. Reinforced concrete flanged
shear walls are generally recognized as efficient
lateral force resisting systems for multistory
buildings, due to their ability to control drift
demand under service load conditions as well as

their inherent ductility capacity under seismic
conditions. The present work extends the above
analytical investigation into the causes of size
effects so as to encompass the case of RC flanged
shear walls exhibiting a flexural and non-flexural
mode of failure.

2. Research significant

Although the experimental data provide
valuable information about the behavior of R.C.
structure and observed hysteretic response, they
are expensive and time-consuming and design
procedures are not available to assist the engineer
in designing and behavior of flanged shear walls.
Using the nonlinear analysis method, it is now
possible, at comparatively low cost and effort, to
predict the complete response of more complex
R.C. members and structures such as tall
structural walls. The main objective of the
present work is to establish whether the behavior
of RC flanged shear walls is indeed size-effect
dependent. This objective is pursued by
comparing experimentally established behavior
[10 and 11] with predicted values. The
predictions are obtained by employing the FE
model.  The use of this model is deemed essential
for the purposes of the present work because it
yields predictions which, unlike code predictions
(commonly used to date in investigations of size
effects), are free of any preconceived ideas
regarding the mode of failure of RC structural
members. There is statistical size effect as well as
fracture mechanics based size effect. For FE
modeling, an analysis tool which is based on
layered nonlinear finite element method
(NONLACS2) and investigate nonlinear
behavior of flanged shear walls was used that is
described next part. 

3. Nonlinear finite element program

A nonlinear finite element analysis program,
NONLACS2 (NONLinear Analysis of Concrete
and Steel Structures), developed by Kheyroddin
[12], is used to analyze the selected R.C. shear
walls. The program employs a layered finite
element approach and can be used to predict the
nonlinear behavior of any plain, reinforced or
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prestressed concrete, steel, or composite
concrete-steel structure that is composed of thin
plate members with plane stress conditions. This
includes beams, slabs (plates), shells, folded
plates, box girders, shear walls, or any
combination of these structural elements. Time-
dependent effects such as creep and shrinkage
can also be considered. 

3.1  Concrete properties

The concrete behaves differently under
different types and combinations of stress
conditions due to the progressive microcracking
at the interface between the mortar and the
aggregates (transition zone). The propagation of
these cracks under the applied loads contributes
to the nonlinear behavior of the concrete. As
shown in Fig.1(a), the uniaxial stress-strain curve
of concrete adopted in this study, is made of two
parts. The ascending branch up to the peak
compressive strength is represented by the
equation proposed by Ashour and Morley [13]:

(1)

Where E0 is the initial modulus of elasticity  of
the concrete, Esc is the secant modulus of the
concrete at the peak stress, is stress, is
strain and is the strain at peak stress. The
descending or the strain-softening branch is
idealized by the Bazant et al. model [14]:

(2)

where is compressive strength of the
concrete. For uniaxially loaded concrete, is
equal to f´c. 

For analysis of most plane stress problems,
concrete is assumed to behave as a stress-induced
orthotropic material. In this study the orthotropic
constitutive relationship developed by Bazant et
al. model [14] is used for modeling the concrete
using the smeared cracking idealization. The
constitutive matrix, D, is given by:

(3)

in which, E1 and E2 are the tangent moduli in
the directions of the material orthotropy, and 
is the Poisson's ratio. The orthotropic material
directions coincide with the principal stress
directions for the uncracked concrete and these
directions are parallel and normal to the cracks
for the cracked concrete. The concept of the
"equivalent uniaxial strain" developed by Darwin
and Pecknold [15] is utilized to relate the
increments of stress and strain in the principal
directions. Therefore, stress-strain curves similar
to the uniaxial stress-strain curves can be used to
formulate the required stress-strain curves in each
principal direction.
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Fig.1 Uniaxial stress-strain curves
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The strength of concrete, , and the values of
E1, E2 and v are functions of the level of stress,
and the stress combinations. The concrete
strength when subjected to biaxial stresses is
determined using the failure envelope developed
by Kupfer et al. [16]. The values of E1 and E2 for
a given stress ratio ( ) are found as the
slopes of the and curves,
respectively. For the descending branches of both
compression and tension stress-strain curves, Ei

is set equal to a very small number, 0.0001, to
avoid computational problems associated with a
negative and zero values for Ei. The concrete is
considered to be crushed, when the equivalent
compressive strain in the principal directions
exceeds the ultimate compressive strain of the
concrete, . For determination of the concrete
ultimate compressive strain, , two models for
unconfined high and normal-strength concrete
(Pastor [17]) and confined concretes (Chung et
al. [18]) are implemented into the program. 

For elimination of the numerical difficulties
after crushing ( ) and cracking of the
concrete ( ), a small amount of
compressive and tensile stress as a fraction of
concrete strength, and , is assigned
(optional) at a high level of stress (Fig.1(a)),
where parameters and define the
remaining compressive and tensile strength
factors, respectively.

3.2  Crack modeling techniques

Cracking of the concrete is one of the
important aspects of material nonlinear behavior
of the concrete. Besides reducing the stiffness of
the structure, cracks have resulted in
redistribution of stresses to the reinforcing steel
as well as increasing the bond stress at the steel-
concrete interface [19]. Cracking of the concrete
is idealized using the fixed smeared cracking
model and is assumed to occur when the principal
tensile stress at a point (usually a Gauss
integration point) exceeds the tensile strength of
the concrete. After cracking, the axes of
orthotropy are aligned parallel and orthogonal to
the crack. The elastic modulus perpendicular to
the crack direction is reduced to a very small
value close to zero and the Poisson effect is

ignored. The effect of the crack is smeared within
the element by modifying the [D] matrix. If 
exceeds the tensile strength of concrete, , the
material stiffness matrix is defined as (one crack
is opened): 

Where (4)

Once one crack is formed, the principal
directions are not allowed to rotate and a second
crack can form only when > , in a direction
perpendicular to the first crack. Then,

Where (5)

The shear retention factor, , with a value of
less than unity, serves to eliminate the numerical
difficulties that arise if the shear modulus is
reduced to zero, and more importantly, it
accounts for the fact that cracked concrete can
still transfer shear forces through aggregate
interlock and dowel action. Due to the bond
between the concrete and the steel reinforcement,
a redistribution of the tensile stress from the
concrete to the reinforcement will occur [20]. In
fact, the concrete is able to resist tension between
the cracks in the direction normal to the crack;
this phenomenon is termed tension-stiffening.
The tension-stiffening effect is idealized by
assuming the ascending and the descending
branches of the tensile stress-strain curve to
terminate at and , respectively .For
evaluation of an "appropriate" value of the
ultimate tensile strain of the concrete, , and
elimination of mesh size dependency
phenomenon, Shayanfar et al [21] proposed the
following simple formula:

(6)

Where h is the width of the element in mm and
is the concrete cracking strain. For

elimination of the element size effect
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the crack band model, based on fracture
mechanics, proposed by Bazant and Oh [22] have
been implemented into the NONLACS2
program.

3.3 Reinforcing bar properties

The reinforcing bars are modeled as an elastic
strain-hardening material as shown in Fig. 1(b).
The reinforcing bars can be modeled either as
smeared layers or as individual bars. In both
cases, perfect bond is assumed between the steel
and the concrete.

3.4 Finite element formulation

The element library includes plane membrane,
plate bending, one dimensional bar, shear
connecter, spring boundary elements as well as a
facet shell element, which is a combination of the
plane membrane and the plate bending elements.
Figure 2 shows some of these elements and the
associated degrees of freedom. The two nodes,
three degrees of freedom per node one
dimensional bar element is used to model
uniaxial truss members, unbonded prestressed

tendons and shear connectors. The program
employs a layered finite element approach. The
structure is idealized as an assemblage of thin
constant thickness plate elements with each
element subdivided into a number of imaginary
layers as shown in Fig. 2(c). A layer can be either
of concrete, smeared reinforcing steel or a
continuous steel plate. The number of layers
depends on the behavior of the structure being
analyzed. Each layer is assumed to be in a state
of plane stress, and can assume any state-
uncracked, partially cracked, fully cracked, non-
yielded, yielded and crushed -depending on the
stress or strain conditions. 

3.5 Nonlinear analysis method

Nonlinear analysis is performed using an
incremental-iterative tangent stiffness approach
and the element stiffness is obtained by adding
the stiffness contributions of all layers at each
Gauss quadrature point.  The change in the
material stiffness matrix during loading
necessitates an incremental solution procedure
with a tangent stiffness scheme that using piece-
wise linearization has been adopted in the
NONLACS2 program.

4. RC flanged shear walls investigated

The RC flanged shear walls analytically
investigated in the present work are shown in
Fig.3. This figure was reproduced from Ref [10],
where a detailed description of the
experimentally established shear wall behavior is
provided. The design details of the shear walls
depicted in the figure are complemented with

31Alireza Mortezaei,  Ali Kheyroddin

Fig.2 Some typical finite elements in

NONLACS2 Program

Table 1 Design details and experimentally established

failure loads of RC shear walls in Ref. [10] (fy=510 MPa

in all cases)
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additional information included in Table 1 and
Table 2. 

As indicated in the figure the shear walls were
subjected to point loading. In order to prevent
bearing failure, load and reaction were
transmitted to the shear walls through rigid steel
platens with a sufficiently large loading surface
to prevent bearing stresses from exceeding
critical levels. Moreover, as an additional
precaution against bearing failure of the shear

walls, the specimens were reinforced in the
regions of the point load in a manner leading to
the formation of a concealed short column.
5. Verification and Applications  

The capability of NONLACS2 program to
reliably simulate the fundamental behavior
arising from elastic and inelastic flexure
interaction was verified by correlating
analytically simulated and measured response of

32 International Journal of Civil Engineerng. Vol. 7, No. 1, March 2009

Fig.3 Schematic representation of RC shear walls in Ref. [10] (see Table 1) investigated analytically in the present

work. (From left to right: SW711, SW022, SW511, SW411, SW211.)

Table 2 Design details and experimentally established failure loads of RC shear walls in Ref. [10] (, fy=510 MPa

in all cases)
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three works. In each case, different forms of
output (including mode of failure) were extracted
and compared with experimental results to verify
key aspects of the numerical model. Although
some discrepancies were observed, the overall
match between the analytical models and
experimental tests was good.

5.1. Kwak and Kim RC shear panels 

The experimental results from reinforced
concrete shear panels tested by Kwak and Kim
[23] are widely used to validate the analytical
models for reinforced concrete membrane
element. These panels were orthogonally
reinforced, and had identical dimensions of 890
mm×890 mm×70 mm. Lateral load was imposed
on the top-right joint and the axial load was
spread along the top rows of joint. Fig.4 shows
the configuration of the test specimen and the
finite element grid used. The finite element used
in this study is an isoparametric 4-node element

with 2×2 Gauss integration because all the
stresses at every Gauss point are the same values
and the 4-node element gives more stable stress
results through the loading history. The assumed
material properties were as follows: Poisson’s
ratio =0.2, the tensile strength of concrete,

MPa, the elastic modulus of steel
Es1=200,000 MPa, Es2=0.01 Es1.

A two-dimensional static monotonic analysis
was performed by Kwak and Kim [23]. For
modeling of shear wall in NONLACS2 program,
have been used four-node shell elements, QLC3
type as plane stress and bending. Results analyses
are plotted in Fig.5 along with the envelope
response of the two-dimensional pushover
analysis and the experimental response of the
specimen. In spite of the exact predictions in the
failure modes, the analysis slightly overestimates
the shear strength of the panels. In addition, the
numerical results still give more exact predictions
for the shear strength of a shear dominant
structure because the prediction by code
guidelines represents the large overestimate.
Totally, the result indicated that NONLACS2
programs provide reasonable results and can be
used to approximate ultimate load. An ultimate
load of 1390 KN was reported for shear panel.

5.2  Wallace and Thomsen flanged walls (1995)

Wallace and Thomsen [24] conducted tests of
T-shaped RC walls subjected to axial
compression and cyclic lateral loading. Using
measured material properties and dimensions, the

ct ff ′=′ 33.0
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Fig.4 Configuration and finite element
idealization of panels.
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Fig.5 Comparison of experimental and
analytical results of Kwak and Kim RC
shear panels

Fig.6 Measured and computed tension flange
strain profile for Specimen TW2 [24]
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monotonic and cyclic responses of Wall TW2 are
calculated and compared with the test results. The
measured and calculated load-deflection curves
match well. As shown in Fig.6, the measured
strain distribution in the flange under tension also
compares well to the computed strains for various
drift levels. Because the model cannot capture
local bar buckling, it was unable to predict the
initiation of these modes of failure as observed in
the tests. Nevertheless, the analytical results
correlate well to the test data prior to the
occurrence of these local modes of failure.

5.3 Vecchio and Palermo flanged walls (2002)

Five large-scale flanged shear walls tested
under static cyclic displacement by Palermo and
Vecchio (2002) [11]. The specimens were
constructed with stiff top and bottom slabs. The
top slabs (2600?1440?150 mm) served to
distribute the horizontal and axial load to the
walls of the structure. The bottom slab
(2600?1440?300 mm), clamped to the laboratory
strong floor, simulated a rigid foundation. The
slabs were reinforced with NO.30 (29.9 mm)
deformed reinforcing bars at a spacing of 350
mm in each direction, with a top and bottom
layer.

The web wall was reinforced with D6
reinforcing bars, the bars were spaced 140 mm
horizontally and 130 mm vertically in two
parallel layers. The flange walls were
approximately 95 mm thick. The flanges were
also reinforced with D6 reinforcing bars, spaced
140 mm horizontally and 130 mm vertically near
the web wall and 255 mm near the tips of the

flanges. The concrete clear covers in the walls
and slabs were 15 and 50 mm, respectively.
Dimensional details of the walls are shown in
Fig.7 and the reinforcement layout for the web
and flange walls are given in Fig.8. Details of the
concrete and reinforcement properties are given
in Table 2.

The RC flanged shear wall shown in Fig.7 and
Fig.8 were modeled as indicated in Fig.10, which
shows typical FE meshes adopted for the
dicretization of the shear walls. It is important to
note that for all shear walls investigated, the FE
meshes comprised finite elements with a similar
size. In fact, the deviation of any element size
from the mean value of all element sizes used for
the discretization of the shear walls did not
exceed 30% of the mean value. As explained in
Ref. [21], the FE model’s results are independent
of the FE size, but no element in the mesh is ever
made smaller than about 3 times the aggregate
size of the mix since the assumption of
homogeneity would break down and, also, there
is simply no material data for elements much

34 International Journal of Civil Engineerng. Vol. 7, No. 1, March 2009

Fig.8 Top view of wall reinforcement [11]

Fig.7 Test specimen details: (a) end view;  (b) side view. [11]
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smaller than the cube or cylinder specimens used
to obtain such material properties. For clarity
purposes, the figures do not indicate the location
of the line elements used to model the
longitudinal and transverse reinforcement. Such
elements modeling the main longitudinal bars
formed three lines coinciding with the lines
connecting the three rows of brick-element nodes
at the bottom face of the shear wall models. On
the other hand, the web reinforcement was
uniformly distributed along the boundaries of the
brick elements in the longitudinal and transverse
directions on the side, top and bottom faces of the
shear wall models. 

The finite element mesh, shown in Fig.9,
consisted of 540 constant strain rectangular
elements. The mesh was divided into four zones:
the web wall, flange walls, top slabs, and bottom
slabs. For modeling of I-shaped shear wall in
NONLACS2 program, have been used 27-node
Lagrangian brick element, QLC3 type  that is
used for modeling concrete, while element LM03
is a 3-node parabolic element, with axial stiffness
only (on account of the negligible role of dowel
action [20]), used for modeling the reinforcing
bars (Fig.10). The main feature of the model is its
heavy dependence on a careful and realistic
description of the concrete behavior (especially
its triaxial response as cracking propagates),
which sharply contrasts with those adopted by
other FE structural-concrete models. 

The shear wall specimens were subjected to
the combined action of the uniformly distributed
axial load and the horizontal load which was
monotonically increased to failure. It is also
important to note that, in order to prevent failure

in the region of applied point loads or reactions,
such regions were modeled by a single concrete
element  which was not allowed to fail
throughout the loading history of the shear walls.
In fact, in order to safeguard against such a type
of failure, the shear walls tested in the work
described in Ref. [11] were locally over-
reinforced. 

6. Results of analysis

The main results of the analysis are
summarized in Table 3 and Table 4 and Fig.11,
Fig.12, Fig.13, Fig.14, Fig.15 and Fig.16. Table 3
and Table 4 include the values of the load-
carrying capacity predicted by the analysis
together with those established experimentally
for the shear walls shown in Fig.3. In the tables,
the load-carrying capacity is expressed both in
the form of the maximum shear force sustained
by the shear walls and in a normalized form
usually adopted in investigations of size effects.
Fig.11 provides a graphical representation of the
correlation of the values of the load-carrying
capacity predicted by analysis with those
established experimentally, while Fig.12 presents
the analytical and experimental load-deflection
curves of the shear walls shown in Fig.1. Fig.13
provides a graphical representation of the
correlation between the analytical values of the
load-carrying capacity of all shear walls
investigated, normalized with respect to their
experimental counterparts, and the size of the
shear walls expressed in terms of the shear wall
length. Similar correlations for each of the av/d
values investigated are shown in Fig.14(a)–(c),

35Alireza Mortezaei,  Ali Kheiroddin

Fig.9 Finite element mesh configuration
Fig.10 Finite elements used for modeling (a)
concrete and (b) steel
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where the analytical and experimental values are
presented separately, expressed in a normalized
form. Finally, Fig.15 shows typical crack patterns
predicted by the analysis at the maximum
sustained load together with the corresponding
experimentally established modes of failure in
Fig.16. 

7. Discussion of results

The analytical results included in Table 3 and
Table 4 and depicted in Fig.11 and Fig.12
reaffirm the ability of the FE model employed in
the present work to yield realistic predictions of

structural-concrete behavior. Such predictions
involve both the load-carrying capacity (see
Table 3 and Table 4 and Fig.11) and the
deformational behavior (see Fig.12) of the shear
walls investigated in the present work. In fact,
Fig.11 indicates that the largest deviation of the
predictions from the diagonal line of the plot,
which represents the ideal correlation between
predicted and measured values of the load-
carrying capacity, is of the order of 30%, with
most predictions exhibiting a significantly
smaller deviation from the diagonal. On the other
hand, as regards the deformational response of
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Fig.11 Graphical correlation between predicted and

experimental values of load-carrying capacity.

Fig.12 Predicted and measured load-deflection curves of

RC shear walls (dashed lines indicating predictions).Table 4 Analytical and experimental values of load-

carrying capacity of RC shear walls in Ref. [9]

Table 3 Analytical and experimental values of load-

carrying capacity of RC shear walls in Ref. [8]
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the shear walls analyzed, Fig.12 indicates a close
correlation between predicted and experimentally
established load-deflection curves, with the
correlation being almost perfect for the cases of
av/d=0.56 and av/d=1.13. 

The use of the present FE model for the
investigation of the causes of size effects in shear
walls with an av/d larger than 2 established that
such effects reflect the development of small
unintended out-of-plane eccentricities,
predominantly caused by load-induced non-
symmetrical cracking. In contrast with the above
findings, Fig.13 indicates that, for the cases of
shear walls with an av/d smaller than 2, load-
carrying capacity is essentially independent of
size effects since the FE model predictions and
the test data show good correlation independently
of beam size. The dependence of the behavior of
a structural-concrete member on size effects is
usually manifested by predicted values of load-
carrying capacity which overestimate their
experimental counterparts in a manner that the
deviation of the former from the latter values
increases with the size of the members. And yet,
none of the above characteristics is exhibited by
the trends of behavior depicted in Fig.13. In fact,
quite the opposite is found to be the case, i.e. the
experimental values of load-carrying capacity are
consistently larger than the predicted ones.
Moreover, while the difference between the two
sets of values is essentially independent of the
member size, the larger discrepancies occur
mainly in the case of the smaller shear walls
which is incompatible with the trend associated
with “size effects”. 

The above difference in behavior regarding
“size effects” exhibited between shear walls with
av/d 2 and shear walls with av/d>2 reflects the
wider differences in behavior characterizing RC
shear walls with such values of av/d [25]. As
described in Ref. [25], the causes of failure of RC
shear walls are associated with the development
of tensile stresses normal to the compressive
stress trajectories. For shear walls with av/d>2,
such stresses develop within the compressive
zone, which, due to its small volume, does not
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Fig.13 Graphical representation of variation with shear
wall length of the predicted values of load-carrying

capacity normalized with respect to their experimental
counterparts

Fig.14 Graphical representation of variation with shear
wall length of the predicted and measured values of load-
carrying capacity expressed in the form of nominal shear
stress normalized with respect to the cylinder compressive
stress fc.
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have the capacity to absorb––through
redistribution––the effect of any additional such
stresses caused by out-of-plane actions. As a
result, the shear wall’s load-carrying capacity is
very sensitive to the development of the above
additional stresses, which eventually lead to
“premature” failure. On the other hand, for shear
walls with the values of av/d investigated in the
present work, the tensile stresses develop within
the shear wall web. The shear wall web, in
contrast with the compressive zone, is
sufficiently large to provide the space required
for the redistribution of any additional tensile
stresses due to out-of-plane action in a manner
that their effect on load-carrying capacity is
negligible. 

On the other hand, it is interesting to note in
Fig.14 that expressing the load-carrying capacity
in the form of a nominal shear stress yields a
variation with the shear wall length which, for
both the analytical and the experimental values,

exhibits the trend widely considered to be
indicative of size-effect dependency. For the case
of the experimentally established load-carrying
capacity, to consider the above trend as indicative
of size-effect dependency implies that the
concept of “shear capacity of a critical section”
provides a suitable failure criterion for the shear
walls investigated in the present work. This is an
essentially elastic or “allowable stress” concept,
where failure is assumed to occur when the
average applied shear stress (obtained from the
ratio of applied shear force to the cross-sectional
area bd) exceeds a critical value. However, this
criterion is not valid for shear walls with a value
of av/d smaller than approximately 2, in which
“shear” failure occurs as a consequence of
interacting flexure and shear. The present
analysis, on the other hand, uses the true (triaxial)
failure criterion for concrete and analyses the
shear wall as a whole: the results show that the
predictions are close to the experimental data and
hence there are no size effects. 

Fig.15 shows typical predictions of the crack
patterns at the load step preceding that causing
collapse of three of the shear walls (2-1000/0.75,
3-1400/0/75 and 4-1750/0.75) investigated. The
figure also includes the corresponding modes of
failure of the shear walls established by
experiment. It is interesting to note in the figure
that inclined cracking penetrated deeper into the
compressive zone than flexural cracking, and
this, which occurred for all shear walls
investigated, is in agreement with the

38 International Journal of Civil Engineerng. Vol. 7, No. 1, March 2009

Fig.15 Typical predicted crack patterns at maximum
sustained load together with the corresponding
experimentally established modes of failure for shear
walls 1-500/0.75, 2-1000/0.75, 3-1400/0.75 and 4-
1750/0.75.

Fig.16. Experimentally established failure mode
of a typical shear wall (shear wall 4-1750/1.00).
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experimental observations. As the smeared-crack
approach adopted for modeling the cracking
process is by itself unable to predict crack widths,
the position of the wider cracks forming in a
shear wall has been identified by the location
(indicated by the thick dots in the figure) of the
largest strains developing in the steel bar crossing
a crack. In fact, the figure indicates that the above
crack predictions are in close agreement with the
experimentally observed main crack patterns
associated with the relevant mode of failure. 

8. Conclusions

The present work reaffirms the ability of the
FE model used for the analysis to yield close
predictions of structural-concrete behavior.
Unlike shear walls with av/d>2, for which the use
of the above model indicated that the causes of
size effects are dictated by out-of-plane actions
predominantly related with load-induced
anisotropy, shear walls with av/d<2 are found to
be independent of size effects. In fact, the form of
representation considered in the literature as
indicative of such effects is meaningless, as it
does not provide a unique relationship between
shear wall behavior and shear wall size. 
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